By Topic

Fast simulation of ECT signal due to a conductive crack of arbitrary width

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chen, Zhenmao ; Sch. of Aerosp. Eng., Xi''an Jiaotong Univ. ; Rebican, M. ; Yusa, N. ; Miya, K.

This paper proposes a strategy for the fast simulation of eddy current testing signals due to a conductive crack of arbitrary width. To cope with a crack of width less than that selected for establishing the database, which is necessary in the fast-forward analysis scheme proposed by authors, a new finite element is introduced to treat the case when the crack boundary is contained in the element. By using such a new element, the fast-forward analysis scheme becomes suitable for the reconstruction of both the shape and width of a planar crack. It is verified that such a multiple material element is efficient for an ECT sensor inducing eddy current parallel with the crack surface. For the case with perpendicular eddy current component, however, the approach is not valid because of a scalar potential jump at the crack surface. Finally, the reason of such a singularity is investigated through numerical simulations

Published in:

Magnetics, IEEE Transactions on  (Volume:42 ,  Issue: 4 )