By Topic

Rotor and flux position estimation in delta-connected AC Machines using the zero-sequence carrier-signal current

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
F. Briz ; Dept. of Electr., Univ. of Oviedo, Gijon, Spain ; M. W. Degner ; P. G. Fernandez ; A. B. Diez

This paper analyzes carrier-signal voltage injection zero-sequence current-based sensorless control techniques for delta-connected three-phase ac machines. The analysis will focus on rotor position estimation (tracking of rotor-position-dependent saliencies), but the method applies equally well to flux position estimation (tracking of flux-dependent saliencies). The paper first develops a theoretical model and then provides analysis of relevant implementation aspects, such as selection of carrier-signal frequency and voltage magnitude, measurement of the zero-sequence carrier-signal current, measurement and compensation of saturation-induced saliencies, and the signal processing needed for position/flux angle estimation. A similar implementation to that proposed in this paper, and with practically the same performance in terms of accuracy and estimation bandwidth, can be obtained for the case of wye-connected machines using the zero-sequence carrier-signal voltage, as shown in IEEE Trans. Ind. Appl., vol. 41, no. 6 pp. 1637-1646, Nov./Dec. 2005.

Published in:

IEEE Transactions on Industry Applications  (Volume:42 ,  Issue: 2 )