Cart (Loading....) | Create Account
Close category search window

Bayesian wavelet-based image deconvolution: a GEM algorithm exploiting a class of heavy-tailed priors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Bioucas-Dias, J.M. ; Dept. of Electr. & Comput. Eng., Inst. of Telecommun., Lisboa, Portugal

Image deconvolution is formulated in the wavelet domain under the Bayesian framework. The well-known sparsity of the wavelet coefficients of real-world images is modeled by heavy-tailed priors belonging to the Gaussian scale mixture (GSM) class; i.e., priors given by a linear (finite of infinite) combination of Gaussian densities. This class includes, among others, the generalized Gaussian, the Jeffreys , and the Gaussian mixture priors. Necessary and sufficient conditions are stated under which the prior induced by a thresholding/shrinking denoising rule is a GSM. This result is then used to show that the prior induced by the "nonnegative garrote" thresholding/shrinking rule, herein termed the garrote prior, is a GSM. To compute the maximum a posteriori estimate, we propose a new generalized expectation maximization (GEM) algorithm, where the missing variables are the scale factors of the GSM densities. The maximization step of the underlying expectation maximization algorithm is replaced with a linear stationary second-order iterative method. The result is a GEM algorithm of O(NlogN) computational complexity. In a series of benchmark tests, the proposed approach outperforms or performs similarly to state-of-the art methods, demanding comparable (in some cases, much less) computational complexity.

Published in:

Image Processing, IEEE Transactions on  (Volume:15 ,  Issue: 4 )

Date of Publication:

April 2006

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.