Notification:
We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Light field compression using disparity-compensated lifting and shape adaptation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chuo-Ling Chang ; Inf. Syst. Lab., Stanford Univ., CA, USA ; Xiaoqing Zhu ; Prashant Ramanathan ; Girod, B.

We propose disparity-compensated lifting for wavelet compression of light fields. With this approach, we obtain the benefits of wavelet coding, such as scalability in all dimensions, as well as superior compression performance. Additionally, the proposed approach solves the irreversibility limitations of previous light field wavelet coding approaches, using the lifting structure. Our scheme incorporates disparity compensation into the lifting structure for the transform across the views in the light field data set. Another transform is performed to exploit the coherence among neighboring pixels, followed by a modified SPIHT coder and rate-distortion optimized bitstream assembly. A view-sequencing algorithm is developed to organize the views for encoding. For light fields of an object, we propose to use shape adaptation to improve the compression efficiency and visual quality of the images. The necessary shape information is efficiently coded based on prediction from the existing geometry model. Experimental results show that the proposed scheme exhibits superior compression performance over existing light field compression techniques.

Published in:

Image Processing, IEEE Transactions on  (Volume:15 ,  Issue: 4 )