By Topic

220-MHz monolithically integrated optical sensor with large-area integrated PIN photodiode

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
M. Fortsch ; Inst. of Electr. Meas.s & Circuit Design, Vienna Univ. of Technol., Austria ; H. Zimmermann ; H. Pless

We propose a PIN photodiode integrated in a BiCMOS process which combines a quantum efficiency of nearly 100% for red light, fast response times, and a low junction capacitance. Bandwidths of 720 MHz at 660 nm and 683 MHz at 850 nm are achieved for this PIN photodiode. It allows the design of fast optoelectronic integrated circuits for many advanced applications in optical sensing, optical storage systems, and optical data transmission for optical wavelengths ranging at least from 660 to 850 nm. Because of the low photodiode capacitance of 0.01 fF/μm2, it is possible to achieve high bandwidths, even with large photodetector areas. The proposed optical receiver employing a PIN photodiode with a diameter of 500 μm and a capacitance of only 2.2 pF attains a -3-dB bandwidth of 220 MHz, which corresponds to a maximum nonreturn-to-zero data rate of 300 Mbit/s.

Published in:

IEEE Sensors Journal  (Volume:6 ,  Issue: 2 )