By Topic

Multisensor image registration via implicit similarity

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Y. Keller ; Dept. of Math., Yale Univ., New Haven, CT, USA ; A. Averbuch

This paper presents an approach to the registration of significantly dissimilar images, acquired by sensors of different modalities. A robust matching criterion is derived by aligning the locations of gradient maxima. The alignment is achieved by iteratively maximizing the magnitudes of the intensity gradients of a set of pixels in one of the images, where the set is initialized by the gradient maxima locations of the second image. No explicit similarity measure that uses the intensities of both images is used. The computation utilizes the full spatial information of the first image and the accuracy and robustness of the registration depend only on it. False matchings are detected and adaptively weighted using a directional similarity measure. By embedding the scheme in a "coarse to fine" formulation, we were able to estimate affine and projective global motions, even when the images were characterized by complex space varying intensity transformations. The scheme is especially suitable when one of the images is of considerably better quality than the other (noise, blur, etc.). We demonstrate these properties via experiments on real multisensor image sets.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:28 ,  Issue: 5 )