Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

Component optimization for image understanding: a Bayesian approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Li Cheng ; Dept. of Comput. Sci., Alberta Univ., Edmonton, Alta., Canada ; Caelli, T. ; Sanchez-Azofeifa, A.

In this paper, the optimizations of three fundamental components of image understanding: segmentation/annotation, 3D sensing (stereo) and 3D fitting, are posed and integrated within a Bayesian framework. This approach benefits from recent advances in statistical learning which have resulted in greatly improved flexibility and robustness. The first two components produce annotation (region labeling) and depth maps for the input images, while the third module integrates and resolves the inconsistencies between region labels and depth maps to fit most likely 3D models. To illustrate the application of these ideas, we have focused on the difficult problem of fitting individual tree models to tree stands which is a major challenge for vision-based forestry inventory systems.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:28 ,  Issue: 5 )