By Topic

Security protection and checking for embedded system integration against buffer overflow attacks via hardware/software

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Zili Shao ; Dept. of Comput., Hong Kong Polytech., China ; Chun Xue ; Qingfeng Zhuge ; Meikang Qiu
more authors

With more embedded systems networked, it becomes an important problem to effectively defend embedded systems against buffer overflow attacks. Due to the increasing complexity and strict requirements, off-the-shelf software components are widely used in embedded systems, especially for military and other critical applications. Therefore, in addition to effective protection, we also need to provide an approach for system integrators to efficiently check whether software components have been protected. In this paper, we propose the HSDefender (Hardware/Software Defender) technique to perform protection and checking together. Our basic idea is to design secure call instructions so systems can be secured and checking can be easily performed. In the paper, we classify buffer overflow attacks into two categories and provide two corresponding defending strategies. We analyze the HSDefender technique with respect to hardware cost, security, and performance. We experiment with our HSDefender technique on the simplescalar/ARM simulator with benchmarks from MiBench, an embedded benchmark suite. The results show that our HSDefender technique can defend a system against more types of buffer overflow attacks with less overhead compared with the previous work.

Published in:

Computers, IEEE Transactions on  (Volume:55 ,  Issue: 4 )