By Topic

A routing methodology for achieving fault tolerance in direct networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
M. E. Gomez ; Dept. of Comput. Eng., Univ. Politecnica de Valencia, Spain ; N. A. Nordbotten ; J. Flich ; P. Lopez
more authors

Massively parallel computing systems are being built with thousands of nodes. The interconnection network plays a key role for the performance of such systems. However, the high number of components significantly increases the probability of failure. Additionally, failures in the interconnection network may isolate a large fraction of the machine. It is therefore critical to provide an efficient fault-tolerant mechanism to keep the system running, even in the presence of faults. This paper presents a new fault-tolerant routing methodology that does not degrade performance in the absence of faults and tolerates a reasonably large number of faults without disabling any healthy node. In order to avoid faults, for some source-destination pairs, packets are first sent to an intermediate node and then from this node to the destination node. Fully adaptive routing is used along both subpaths. The methodology assumes a static fault model and the use of a checkpoint/restart mechanism. However, there are scenarios where the faults cannot be avoided solely by using an intermediate node. Thus, we also provide some extensions to the methodology. Specifically, we propose disabling adaptive routing and/or using misrouting on a per-packet basis. We also propose the use of more than one intermediate node for some paths. The proposed fault-tolerant routing methodology is extensively evaluated in terms of fault tolerance, complexity, and performance.

Published in:

IEEE Transactions on Computers  (Volume:55 ,  Issue: 4 )