By Topic

Memory-aware dynamic voltage scaling for multimedia applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Choi, J. ; Dept. of Comput. Sci., Yonsei Univ., South Korea ; Cha, H.

As the computing environments are continuously moving towards battery-operated mobile and handheld systems, the development of energy-saving mechanisms for such devices has recently become a technical challenge. Dynamic voltage scaling (DVS) has historically been considered an effective method to reduce the processor power consumption. Conventional DVS techniques typically consider only processor utilisation issues in a policy-making process. However, as memory-bound multimedia applications are becoming popular in handheld devices, the DVS policies should consider the so-called 'memory wall' problem to maximise energy gain. Recent DVS techniques suffer from the inefficiency of their policies caused by the memory-wall problem while executing multimedia applications, and no previous research on DVS considers the problem explicitly. The existence of the memory wall problem in a real system is revealed and a metric that can be used to detect the problem in advance is found. A memory-aware DVS (M-DVS) technique that takes the memory wall problem fully into consideration is proposed. The experimental results on a PDA show that M-DVS can reduce ∼8% of additional power consumption, compared with conventional DVS, without any QoS degradation for handling multimedia clips.

Published in:

Computers and Digital Techniques, IEE Proceedings -  (Volume:153 ,  Issue: 2 )