By Topic

Universal test set for detecting stuck-at and bridging faults in double fixed-polarity Reed-Muller programmable logic arrays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Rahaman, H. ; Dept. of Inf. Technol., Bengal Eng. & Sci. Univ., Howrah, India ; Das, D.K.

A testable design for detecting stuck-at and bridging faults in programmable logic arrays (PLAs) based on double fixed-polarity Reed-Muller (DFPRM) expression is presented. DFPRM expression has the advantage of compactness and easy testability. The EXOR part in the proposed structure is designed as a tree of depth (log2 s+1), where s is the number of product terms and sum terms in the given DFPRM expression realised by PLAs. This solves an open problem of designing an EXOR-tree-based RMC network that admits a universal test set. For an n-variable function, a test sequence of length (2n+8) vectors is sufficient to detect all single stuck-at and bridging faults in the proposed design. The proposed EXOR-tree-based network reduces circuit delay significantly compared with cascaded EXOR-based design. The test sequence is independent of the function and the circuit-under-test, and the test set can be stored in a ROM for built-in-self-test.

Published in:

Computers and Digital Techniques, IEE Proceedings -  (Volume:153 ,  Issue: 2 )