By Topic

Exploratory analysis of brain connectivity with ICA

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Rajapakse, J.C. ; BioInformatics Res. Centre, Nanyang Technol. Univ., Singapore ; Choong Leong Tan ; Xuebin Zheng ; Mukhopadhyay, S.
more authors

Covariance-based methods of exploration of functional connectivity of the brain from functional magnetic resonance imaging (fMRI) experiments, such as principal component analysis (PCA) and structural equation modeling (SEM), require a priori knowledge such as an anatomical model to infer functional connectivity. In this research, a hybrid method, combining independent component analysis (ICA) and SEM, which is capable of deriving functional connectivity in an exploratory manner without the need of a prior model is introduced. The spatial ICA (SICA) derives independent neural systems or sources involved in task-related brain activation, while an automated method based on the SEM finds the structure of the connectivity among the elements in independent neural systems. Unlike second-order approaches used in earlier studies, the task-related neural systems derived from the ICA provide brain connectivity in the complete statistical sense. The use and efficacy of this approach is illustrated on two fMRI datasets obtained from a visual task and a language reading task.

Published in:

Engineering in Medicine and Biology Magazine, IEEE  (Volume:25 ,  Issue: 2 )