By Topic

Unmixing fMRI with independent component analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Calhoun, V.D. ; Med. Image Anal. Lab., Olin Neuropsychiatry Res. Center, Hartford, CT, USA ; Adali, T.

Independent component analysis (ICA) is a statistical method used to discover hidden factors (sources or features) from a set of measurements or observed data such that the sources are maximally independent. Typically, it assumes a generative model where observations are assumed to be linear mixtures of independent sources and works with higher-order statistics to achieve independence. ICA has recently demonstrated considerable promise in characterizing functional magnetic resonance imaging (fMRI) data, primarily due to its intuitive nature and ability for flexible characterization of the brain function. In this article, ICA is introduced and its application to fMRI data analysis is reviewed.

Published in:

Engineering in Medicine and Biology Magazine, IEEE  (Volume:25 ,  Issue: 2 )