By Topic

Optimal antenna selection based on capacity maximization for MIMO systems in correlated channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
L. Dai ; Hong Kong Univ. of Sci. & Technol., China ; S. Sfar ; K. B. Letaief

Recent work has shown that multiple-input multiple-output (MIMO) systems with multiple antennas at both the transmitter and receiver are able to achieve great capacity improvement. In such systems, it is desirable to select a subset of the available antennas so as to reduce the number of radio frequency (RF) chains. This paper addresses the problem of antenna selection in correlated channels. We consider a narrowband communication system with M transmit and N receive antennas. We present the criterion for selecting the optimal Lt out of M transmit and Lr out of N receive antennas in terms of capacity maximization, assuming that only the long-term channel statistics, instead of the instantaneous channel-state information, are known. Simulations will be used to validate our theoretical analysis and demonstrate that the number of required RF chains can be significantly decreased using our proposed selection strategy, while achieving even better performance than the conventional MIMO system without antenna selection.

Published in:

IEEE Transactions on Communications  (Volume:54 ,  Issue: 3 )