By Topic

Imperfect channel-state information in MIMO transmission

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Weber, T. ; Inst. of Commun. Eng., Univ. of Rostock, Germany ; Sklavos, A. ; Meurer, M.

A especially favorable multiple-input multiple-output (MIMO)-based concept for future mobile radio systems consists of the application of joint detection (JD) in the uplink and joint transmission (JT) in the downlink. By this, all the computational complex signal processing is shifted to the base station (BS), resulting in low-complexity mobile stations. Both JD and JT require channel knowledge at the BS which, if time-division duplexing is applied, can be obtained by training signal-based channel estimation in the uplink. Unfortunately, channel estimates are never perfect, which leads to performance degradations if these channel estimates, instead of perfect channel knowledge, are used for JD or JT. Especially channel errors due to the time variance of the mobile radio channel are often considered to be a severe problem in the application of MIMO techniques in high-mobility scenarios, which requires closer investigation. In this paper, a novel analysis of the performance degradations of zero-forcing JD and JT due to imperfect channel knowledge is presented. The analysis is based on linear Taylor approximation of the data-estimation error due to imperfect channel knowledge.

Published in:

Communications, IEEE Transactions on  (Volume:54 ,  Issue: 3 )