By Topic

Generalized Performance of Concatenated Quantum Codes—A Dynamical Systems Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

We apply a dynamical systems approach to concatenation of quantum error correcting codes, extending and generalizing the results of Rahn to both diagonal and nondiagonal channels. Our point of view is global: instead of focusing on particular types of noise channels, we study the geometry of the coding map as a discrete-time dynamical system on the entire space of noise channels. In the case of diagonal channels, we show that any code with distance at least three corrects (in the infinite concatenation limit) an open set of errors. For Calderbank–Shor–Steane (CSS) codes, we give a more precise characterization of that set. We show how to incorporate noise in the gates, thus completing the framework. We derive some general bounds for noise channels, which allows us to analyze several codes in detail.

Published in:

IEEE Transactions on Automatic Control  (Volume:51 ,  Issue: 3 )