By Topic

Active and dynamic information fusion for multisensor systems with dynamic bayesian networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yongmian Zhang ; Dept. of Electr., Rensselaer Polytech. Inst., Troy, NY, USA ; Qiang Ji

Many information fusion applications are often characterized by a high degree of complexity because: 1) data are often acquired from sensors of different modalities and with different degrees of uncertainty; 2) decisions must be made efficiently; and 3) the world situation evolves over time. To address these issues, we propose an information fusion framework based on dynamic Bayesian networks to provide active, dynamic, purposive and sufficing information fusion in order to arrive at a reliable conclusion with reasonable time and limited resources. The proposed framework is suited to applications where the decision must be made efficiently from dynamically available information of diverse and disparate sources.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:36 ,  Issue: 2 )