By Topic

Dynamics of facial expression: recognition of facial actions and their temporal segments from face profile image sequences

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Pantic, M. ; Electr. Eng., Math. & Comput. Sci., Delft Univ. of Technol., Netherlands ; Patras, I.

Automatic analysis of human facial expression is a challenging problem with many applications. Most of the existing automated systems for facial expression analysis attempt to recognize a few prototypic emotional expressions, such as anger and happiness. Instead of representing another approach to machine analysis of prototypic facial expressions of emotion, the method presented in this paper attempts to handle a large range of human facial behavior by recognizing facial muscle actions that produce expressions. Virtually all of the existing vision systems for facial muscle action detection deal only with frontal-view face images and cannot handle temporal dynamics of facial actions. In this paper, we present a system for automatic recognition of facial action units (AUs) and their temporal models from long, profile-view face image sequences. We exploit particle filtering to track 15 facial points in an input face-profile sequence, and we introduce facial-action-dynamics recognition from continuous video input using temporal rules. The algorithm performs both automatic segmentation of an input video into facial expressions pictured and recognition of temporal segments (i.e., onset, apex, offset) of 27 AUs occurring alone or in a combination in the input face-profile video. A recognition rate of 87% is achieved.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:36 ,  Issue: 2 )