By Topic

Segmentation of psoriasis vulgaris images using multiresolution-based orthogonal subspace techniques

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Taur, J.S. ; Dept. of Electr. Eng., Nat. Chung Hsing Univ., Taichung, Taiwan ; Lee, G.H. ; Tao, C.W. ; Chen, C.C.
more authors

In this paper, a method is proposed for the segmentation of color images using a multiresolution-based signature subspace classifier (MSSC) with application to psoriasis images. The essential techniques consist of feature extraction and image segmentation (classification) methods. In this approach, the fuzzy texture spectrum and the two-dimensional fuzzy color histogram in the hue-saturation space are first adopted as the feature vector to locate homogeneous regions in the image. Then these regions are used to compute the signature matrices for the orthogonal subspace classifier to obtain a more accurate segmentation. To reduce the computational requirement, the MSSC has been developed. In the experiments, the method is quantitatively evaluated by using a similarity function and compared with the well-known LS-SVM method. The results show that the proposed algorithm can effectively segment psoriasis images. The proposed approach can also be applied to general color texture segmentation applications.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:36 ,  Issue: 2 )