By Topic

A stable learning algorithm for block-diagonal recurrent neural networks: application to the analysis of lung sounds

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mastorocostas, P.A. ; Dept. of Informatics & Commun., Technol. Educ.al Inst. of Serres, Greece ; Theocharis, J.B.

A novel learning algorithm, the Recurrent Neural Network Constrained Optimization Method (RENNCOM) is suggested in this paper, for training block-diagonal recurrent neural networks. The training task is formulated as a constrained optimization problem, whose objective is twofold: 1) minimization of an error measure, leading to successful approximation of the input/output mapping and 2) optimization of an additional functional, the payoff function, which aims at ensuring network stability throughout the learning process. Having assured the network and training stability conditions, the payoff function is switched to an alternative form with the scope to accelerate learning. Simulation results on a benchmark identification problem demonstrate that, compared to other learning schemes with stabilizing attributes, the RENNCOM algorithm has enhanced qualities, including, improved speed of convergence, accuracy and robustness. The proposed algorithm is also applied to the problem of the analysis of lung sounds. Particularly, a filter based on block-diagonal recurrent neural networks is developed, trained with the RENNCOM method. Extensive experimental results are given and performance comparisons with a series of other models are conducted, underlining the effectiveness of the proposed filter.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:36 ,  Issue: 2 )