By Topic

A method for improved VCSEL packaging using MEMS and ink-jet technologies

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Nallani, A.K. ; Univ. of Texas, Richardson, TX ; Ting Chen ; Hayes, D.J. ; Woo-Seong Che
more authors

Vertical-cavity surface-emitting lasers (VCSELs) have been recognized as low-cost low-power light sources for applications, such as, optoelectronic (OE) interconnects for high-speed optical data communication. However, many VCSEL applications have not been fully realized due to the lack of solutions to technical issues such as optical coupling, alignment, interconnects, and RF compatibility. In this paper, the authors propose microelectromechanical systems (MEMS) and MEMS-enabled ink-jet printing technologies to provide improved solutions to these technically challenging problems in OE-device packaging. Wafer-level microoptical elements consisting of transparent polymeric pedestals and microlenses were designed and fabricated directly on top of the VCSEL-emitting facets to improve the optical-coupling efficiency between the VCSEL and the optical fiber. Self-aligning MEMS clampers and micromold structures were designed and fabricated for precise packaging and reliable electrical connection of diced VCSEL arrays. This novel packaging process is substrate independent and relatively simple. This technique will provide a reliable assembly of OE devices in miniature optical systems on various substrates

Published in:

Lightwave Technology, Journal of  (Volume:24 ,  Issue: 3 )