Cart (Loading....) | Create Account
Close category search window

Performance comparison of an 80-km-per-span EDFA system and a 160-km hut-skipped all-Raman system over standard single-mode fiber

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xiang Zhou ; AT&T Labs-Res., Middletown, NJ ; Birk, M.

In this paper, we present a comprehensive comparison of the performance of an 80-km-per-span erbium-doped fiber amplifier (EDFA) system and a hut-skipped (160-km-per-span) all-Raman system over standard single-mode fiber (SSMF) for the first time, using semianalytic models. The numerical results reveal that a hut-skipped all-Raman system (using one-order Raman pumping) can achieve comparable performance as the conventional 80-km-per-span EDFA system for a common 50-GHz-spaced 80 times 10 Gb/s nonreturn-to-zero (NRZ) wavelength division multiplexing (WDM) system at typical fiber loss of 0.22 dB/km. For 100-GHz-spaced 40 times 40 Gb/s carrier-suppressed return-to-zero (CS-RZ) WDM transmission, it was found that a hut-skipped all-Raman system can achieve even better performance than the current 80-km-per-span EDFA system. It was also found that the impact of pattern-dependent Raman crosstalk is more severe than interchannel cross-phase modulation (XPM) in a hut-skipped all-Raman system with 80 times 10 Gb/s capacity

Published in:

Lightwave Technology, Journal of  (Volume:24 ,  Issue: 3 )

Date of Publication:

March 2006

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.