By Topic

Wavelength-exchanging cross connects (WEX)-a new class of photonic cross-connect architectures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
H. S. Hamza ; Comput. Sci. & Eng. Dept., Univ. of Nebraska-Lincoln, Lincoln, USA ; J. S. Deogun

All-optical wavelength division multiplexing (WDM) networks are expected to realize the potential of optical technologies to implement different networking functionalities in the optical domain. A key component in WDM networks is the optical switch that provides the basic functionality of connecting input ports to output ports. Existing WDM switches make use of space switches and wavelength converters (WCs) to realize switching. However, this not only increases the size and the complexity of the switch but also bears heavily on the cost. In this paper, the authors propose a new class of photonic switch architectures called wavelength-exchanging cross connect (WEX) that provides several advantages over existing switches by enabling a single-step space switching and wavelength conversion and thus eliminating the need for a separate conversion stage. This greatly enhances the switch architecture by reducing its size and complexity. The new class of cross-connect architectures is based on the proposed concept of a wavelength-exchange optical crossbar (WOC). The WOC concept is realized using the simultaneous exchange between two optical signals. The proposed WEX architecture is highly scalable. To establish scalability, the authors present a systematic method of developing instances of the switch architectures of an arbitrary large size

Published in:

Journal of Lightwave Technology  (Volume:24 ,  Issue: 3 )