Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

A combined gate replacement and input vector control approach for leakage current reduction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
2 Author(s)
Lin Yuan ; Electr. & Comput. Eng. Dept., Univ. of Maryland, College Park, MD, USA ; Gang Qu

Input vector control (IVC) is a popular technique for leakage power reduction. It utilizes the transistor stack effect in CMOS gates by applying a minimum leakage vector (MLV) to the primary inputs of combinational circuits during the standby mode. However, the IVC technique becomes less effective for circuits of large logic depth because the input vector at primary inputs has little impact on leakage of internal gates at high logic levels. In this paper, we propose a technique to overcome this limitation by replacing those internal gates in their worst leakage states by other library gates while maintaining the circuit's correct functionality during the active mode. This modification of the circuit does not require changes of the design flow, but it opens the door for further leakage reduction when the MLV is not effective. We then present a divide-and-conquer approach that integrates gate replacement, an optimal MLV searching algorithm for tree circuits, and a genetic algorithm to connect the tree circuits. Our experimental results on all the MCNC91 benchmark circuits reveal that 1) the gate replacement technique alone can achieve 10% leakage current reduction over the best known IVC methods with no delay penalty and little area increase; 2) the divide-and-conquer approach outperforms the best pure IVC method by 24% and the existing control point insertion method by 12%; and 3) compared with the leakage achieved by optimal MLV in small circuits, the gate replacement heuristic and the divide-and-conquer approach can reduce on average 13% and 17% leakage, respectively.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:14 ,  Issue: 2 )