By Topic

Three-Dimensional Image Sensing, Visualization, and Processing Using Integral Imaging

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Stern, A. ; Electro Opt. Eng. Dept., Ben-Gurion Univ. of the Negev, Beer-Sheva, Israel ; Javidi, B.

Three dimensional (3-D) imaging and display have been subjects of much research due to their diverse benefits and applications. However, due to the necessity to capture, record, process, and display an enormous amount of optical data for producing high-quality 3-D images, the developed 3-D imaging techniques were forced to compromise their performances (e.g., gave up the continuous parallax, restricting to a fixed viewing point) or to use special devices and technology (such as coherent illuminations, special spectacles) which is inconvenient for most practical implementation. Today's rapid progress of digital capture and display technology opened the possibility to proceed toward noncompromising, easy-to-use 3-D imaging techniques. This technology progress prompted the revival of the integral imaging (II)technique based on a technique proposed almost one century ago. II is a type of multiview 3-D imaging system that uses an array of diffractive or refractive elements to capture the 3-D optical data. It has attracted great attention recently, since it produces autostereoscopic images without special illumination requirements. However, with a conventional II system it is not possible to produce 3-D images that have both high resolution, large depth-of-field, and large viewing angle. This paper provides an overview of the approaches and techniques developed during the last decade to overcome these limitations. By combining these techniques with upcoming technology it is to be expected that II-based 3-D imaging systems will reach practical applicability in various fields.

Published in:

Proceedings of the IEEE  (Volume:94 ,  Issue: 3 )