By Topic

Optimal periodic preventive repair and replacement policy assuming geometric process repair

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Guan Jun Wang ; Dept. of Math., Southeast Univ., Nanjing, China ; Yuan Lin Zhang

In this paper, a simple deteriorating system with repair is studied. When failure occurs, the system is replaced at high cost. To extend the operating life, the system can be repaired preventively. However, preventive repair does not return the system to a "good as new" condition. Rather, the successive operating times of the system after preventive repair form a stochastically decreasing geometric process, while the consecutive preventive repair times of the system form a stochastically increasing geometric process. We consider a bivariate preventive repair policy to solve the efficiency for a deteriorating & valuable system. Thus, the objective of this paper is to determine an optimal bivariate replacement policy such that the average cost rate (i.e., the long-run average cost per unit time) is minimized. The explicit expression of the average cost rate is derived, and the corresponding optimal replacement policy can be determined numerically. An example is given where the operating time of the system is given by a Weibull distribution.

Published in:

Reliability, IEEE Transactions on  (Volume:55 ,  Issue: 1 )