By Topic

Study of intermodulation in RF MEMS variable capacitors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Girbau, D. ; Dept. of Signal Theor. & Commun., Univ. Politecnica de Catalunya, Barcelona, Spain ; Otegi, Nerea ; Pradell, L. ; Lazaro, A.

This paper provides a rigorous study of the causes and physical origins of intermodulation distortion (IMD) in RF microelectromechanical systems (MEMS) capacitors, its analytical dependence on the MEMS device design parameters, and its effects in RF systems. It is shown that not only third-order products exist, but also fifth order and higher. The high-order terms are mainly originated by the nonlinear membrane displacement versus applied voltage and, in the case considered in this study, with an additional contribution from the nonlinear dependence of the reflection coefficient phase on the displacement. It is also shown that the displacement nonlinear behavior also contributes to the total mean position of the membrane. In order to study these effects in depth, an analytical frequency-dependent IMD model for RF MEMS based on a mobile membrane is proposed and particularized to the case of a MEMS varactor-a device for which IMD can be significant. The model is validated, up to the fifth order, theoretically (using harmonic balance) and empirically (the IMD of a MEMS varactor is measured). To this end, a two-tone IMD reflection measurement system for MEMS is proposed.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:54 ,  Issue: 3 )