Cart (Loading....) | Create Account
Close category search window

Scalable compact circuit model and synthesis for RF CMOS spiral inductors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wei Gao ; Inst. of Microelectron., Tsinghua Univ., Beijing, China ; Zhiping Yu

A scalable industry-oriented, 24-element "2-π" compact circuit model for on-chip RF CMOS spiral inductors is presented. It has a good accuracy up to self-resonant frequency (SRF). Two levels of modeling approaches are provided, which are: 1) the fixed model, which extracts the values of circuit elements directly from the measured S-parameters of a given device, achieving high accuracy, but no scalability and 2) the scalable model, in which circuit elements are related to the geometry (i.e., layout) through a set of formulas with model parameters calibrated upon a few testing devices. The synthesis procedure is also discussed, which includes the scalable model and a SPICE simulator as the evaluation method within the iteration loop.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:54 ,  Issue: 3 )

Date of Publication:

March 2006

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.