By Topic

A neuromorphic depth-from-motion vision model with STDP adaptation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Zhijun Yang ; Dept. of Comput. Sci., Nanjing Normal Univ., China ; Murray, A. ; Worgotter, F. ; Cameron, K.
more authors

We propose a simplified depth-from-motion vision model based on leaky integrate-and-fire (LIF) neurons for edge detection and two-dimensional depth recovery. In the model, every LIF neuron is able to detect the irradiance edges passing through its receptive field in an optical flow field, and respond to the detection by firing a spike when the neuron's firing criterion is satisfied. If a neuron fires a spike, the time-of-travel of the spike-associated edge is transferred as the prediction information to the next synapse-linked neuron to determine its state. Correlations between input spikes and their timing thus encode depth in the visual field. The adaptation of synapses mediated by spike-timing-dependent plasticity is used to improve the algorithm's robustness against inaccuracy caused by spurious edge propagation. The algorithm is characterized on both artificial and real image sequences. The implementation of the algorithm in analog very large scale integrated (aVLSI) circuitry is also discussed.

Published in:

Neural Networks, IEEE Transactions on  (Volume:17 ,  Issue: 2 )