By Topic

Blind estimation of channel parameters and source components for EEG signals: a sparse factorization approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yuanqing Li ; Inst. of Autom. Sci. & Eng., South China Univ. of Technol., Guangzhou, China ; Cichocki, A. ; Amari, S.-I.

In this paper, we use a two-stage sparse factorization approach for blindly estimating the channel parameters and then estimating source components for electroencephalogram (EEG) signals. EEG signals are assumed to be linear mixtures of source components, artifacts, etc. Therefore, a raw EEG data matrix can be factored into the product of two matrices, one of which represents the mixing matrix and the other the source component matrix. Furthermore, the components are sparse in the time-frequency domain, i.e., the factorization is a sparse factorization in the time frequency domain. It is a challenging task to estimate the mixing matrix. Our extensive analysis and computational results, which were based on many sets of EEG data, not only provide firm evidences supporting the above assumption, but also prompt us to propose a new algorithm for estimating the mixing matrix. After the mixing matrix is estimated, the source components are estimated in the time frequency domain using a linear programming method. In an example of the potential applications of our approach, we analyzed the EEG data that was obtained from a modified Sternberg memory experiment. Two almost uncorrelated components obtained by applying the sparse factorization method were selected for phase synchronization analysis. Several interesting findings were obtained, especially that memory-related synchronization and desynchronization appear in the alpha band, and that the strength of alpha band synchronization is related to memory performance.

Published in:

Neural Networks, IEEE Transactions on  (Volume:17 ,  Issue: 2 )