By Topic

The linear separability problem: some testing methods

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
D. Elizondo ; Centre for Comput. Intelligence, De Montfort Univ., Leicester, UK

The notion of linear separability is used widely in machine learning research. Learning algorithms that use this concept to learn include neural networks (single layer perceptron and recursive deterministic perceptron), and kernel machines (support vector machines). This paper presents an overview of several of the methods for testing linear separability between two classes. The methods are divided into four groups: Those based on linear programming, those based on computational geometry, one based on neural networks, and one based on quadratic programming. The Fisher linear discriminant method is also presented. A section on the quantification of the complexity of classification problems is included.

Published in:

IEEE Transactions on Neural Networks  (Volume:17 ,  Issue: 2 )