By Topic

A node pruning algorithm based on a Fourier amplitude sensitivity test method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
P. Lauret ; Lab. de Genie Industriel, Univ. de la Reunion, France ; E. Fock ; T. A. Mara

In this paper, we propose a new pruning algorithm to obtain the optimal number of hidden units of a single layer of a fully connected neural network (NN). The technique relies on a global sensitivity analysis of model output. The relevance of the hidden nodes is determined by analysing the Fourier decomposition of the variance of the model output. Each hidden unit is assigned a ratio (the fraction of variance which the unit accounts for) that gives their ranking. This quantitative information therefore leads to a suggestion of the most favorable units to eliminate. Experimental results suggest that the method can be seen as an effective tool available to the user in controlling the complexity in NNs.

Published in:

IEEE Transactions on Neural Networks  (Volume:17 ,  Issue: 2 )