By Topic

Design and analysis of a low-power discrete phase modulator in a 0.13-μm logic CMOS process

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xiuge Yang ; Radio Frequency Syst. On Chip, Univ. of Florida, Gainesville, FL, USA ; Lin, J.

This letter reports the design and analysis of a low-power discrete constant envelope phase modulator. The modulator discretely changes the phase of a constant envelope carrier according to the input digital data bits. A test chip was fabricated in a 0.13-μm logic complementary metal oxide semiconductor process. The modulator consumes 2mA from a 1.2-V supply, has an operating frequency range between 1.5GHz and 3.3GHz, and can support a data rate up to 225Mbps with better than 5.5% error vector magnitude. The modulator can be designed to generate different modulation schemes by digitally controlling the phase and/or amplitude of the carrier, and therefore potentially can be used in software defined radios.

Published in:

Microwave and Wireless Components Letters, IEEE  (Volume:16 ,  Issue: 3 )