By Topic

An area-efficient universal cryptography processor for smart cards

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Eslami, Y. ; Dept. of DRAM R&D, Micron Technol. Inc., Boise, ID, USA ; Sheikholeslami, A. ; Gulak, P.G. ; Masui, S.
more authors

Cryptography circuits for smart cards and portable electronic devices provide user authentication and secure data communication. These circuits should, in general, occupy small chip area, consume low power, handle several cryptography algorithms, and provide acceptable performance. This paper presents, for the first time, a hardware implementation of three standard cryptography algorithms on a universal architecture. The microcoded cryptography processor targets smart card applications and implements both private key and public key algorithms and meets the power and performance specifications and is as small as 2.25 mm/sup 2/ in 0.18-/spl mu/m 6LM CMOS. A new algorithm is implemented by changing the contents of the memory blocks that are implemented in ferroelectric RAM (FeRAM). Using FeRAM allows nonvolatile storage of the configuration bits, which are changed only when a new algorithm instantiation is required.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:14 ,  Issue: 1 )