Cart (Loading....) | Create Account
Close category search window
 

SWAN: high-level simulation methodology for digital substrate noise generation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)

Substrate noise generated by the switching digital circuits degrades the performance of analog circuits embedded on the same substrate. It is therefore important to know the amount of noise at a certain point on the substrate. Existing transistor-level simulation approaches based on a substrate model extracted from layout information are not feasible for digital circuits of practical size. This paper presents a complete high-level methodology, which simulates a large digital standard cell-based design using a network of substrate macromodels, with one macromodel for each standard cell. Such macromodels can be constructed for both EPI-type and bulk-type substrates. Comparison of our substrate waveform analysis (SWAN) to several measurements and to several full SPICE simulations indicates that the substrate noise is simulated with our methodology within 10%-20% error in the time domain and within 2 dB relative error at the major resonance in the frequency domain. However, it is several orders of magnitude faster in CPU time than a full SPICE simulation.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:14 ,  Issue: 1 )

Date of Publication:

Jan. 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.