By Topic

Dielectrophoresis of DNA: time- and frequency-dependent collections on microelectrodes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bakewell, D.J. ; Dept. of Electron. & Electr. Eng., Glasgow Univ. ; Morgan, F.

This paper reports measurements that characterize the collection of DNA onto interdigitated microelectrodes by high-frequency dielectrophoresis. Measurements of time-dependent collection of 12 kilobase pair plasmid DNA onto microelectrodes by dielectrophoresis show significant reduction in the response as the frequency increases from 100 kHz to 20 MHz. Collection time profiles are quantitatively measured using fluorescence microscopy over the range 100 kHz to 5 MHz and are represented in terms of two parameters: the initial dielectrophoretic collection rate, and the initial to steady-state collection transition. Measured values for both parameters are consistent with trends in the frequency-dependent real part of the effective polarizability measured for the same plasmid DNA using dielectric spectroscopy. The experimentally measured parameters are qualitatively compared with trends predicted by theory that takes into account dielectrophoretic particle movement and diffusion. The differences between experiment and theory are discussed with suggested improvements to theoretical models, for example, including the effects of electrohydrodynamically driven fluid motion

Published in:

NanoBioscience, IEEE Transactions on  (Volume:5 ,  Issue: 1 )