By Topic

Global node selection for localization in a distributed sensor network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
L. M. Kaplan ; U.S. Army Res. Lab., Adelphi, MD, USA

This work considers the problem of selecting the best nodes for localizing (in the mean squared (MS) position error sense) a target in a distributed wireless sensor network. Each node consists of an array of sensors that are able to estimate the direction of arrival (DOA) to a target. Different computationally efficient node selection approaches that use global network knowledge are introduced. Performance bounds based on the node/target geometry are derived, and these bounds help to determine the necessary communication reach of the active nodes. The resulting geolocation performance and energy usage, based on communication distance, is evaluated for a decentralized extended Kalman filter (EKF) that is exploiting the different selection approaches.

Published in:

IEEE Transactions on Aerospace and Electronic Systems  (Volume:42 ,  Issue: 1 )