By Topic

An improved deadlock control policy using elementary siphons and MIP approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
ZhiWu Li ; Sch. of Electro-Mech. Eng., Xidian Univ., Xi''an ; Na Wei

Based on elementary siphons of Petri nets and the mixed integer programming approach, an improved deadlock prevention policy is developed for S3PR. Siphons in such a plant Petri net model are divided into elementary and dependent ones. Our policy consists of two stages: siphon control and control-induced siphon control. At first stage, a monitor (control place) is added for each elementary siphon such that it is invariant-controlled. Due to the addition of monitors to plant model, control-induced siphons are possibly generated in the augmented S3PR which is an RCN-merged net. The second stage sees that monitors are added to make always marked control-induced siphons in the resultant RCN-merged net without generating new control-induced siphons. Compared with our previous work, the deadlock prevention policy developed in this paper can lead to a structurally simple liveness-enforcing Petri net supervisor by adding only a small number of monitors and arcs. A flexible manufacturing systems (FMS) example is utilized to illustrate the proposed methods

Published in:

Industrial Technology, 2005. ICIT 2005. IEEE International Conference on

Date of Conference:

14-17 Dec. 2005