By Topic

Differential encoding technique for multi-antenna systems with correlated Rayleigh fading channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
V. K. Nguyen ; Sch. of Eng. & Technol., Deakin Univ., Geelong, Vic., Australia

Differential space-time modulation (DSTM) techniques developed for multi-antenna systems allow the receiver to detect the transmitted signal without the knowledge of the fading channels. It can be viewed as an extension of differential phase-shift keying (DPSK) in single antenna systems. In this paper, we derived the pairwise error probability upper bound of differential space-time coded systems with spatially correlated Rayleigh fading channels. Based on the performance analysis, we develop a novel DSTM scheme which can exploit the spatial correlation in the fading channels. It is found that by carefully designing the initial transmitted signal matrix, the performance of the differential space-time coded systems can be significantly improved

Published in:

2005 IEEE International Conference on Industrial Technology

Date of Conference:

14-17 Dec. 2005