By Topic

Sensor system with differential arrangement of temperature MOS sensor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Husak, M. ; Dept. of Microelectronics, Czech Tech. Univ., Prague ; Jakovenko, J. ; Boura, A.

In this article, an arrangement of a temperature sensor system is presented. The system utilizes temperature dependence of the current through the channel of MOS structure. Differential arrangement of the temperature sensor is designed. The arrangement allows measurement of temperature gradient. Using suitable geometric arrangement it is possible to compute direction from the temperature gradient, i.e. for example angle of air flow over the chip. Integrated structure of temperature sensors on the chip has orthogonal arrangement. Optimal operating modes have been selected for the design. There have been performed simulations of dependence of temperature sensitivity of the transistors as temperature sensor on changes of its basic parameters. Modes of weak and strong inversion of MOS structure operation have been simulated in the design. Optimal setup of operating mode has been selected for the design of integrated temperature matrix. The matrix has been used for the design of a probe for measurement of velocity and direction of the gas (air) flow over the chip. Various arrangements of MOS sensor structures have been designed. CoventorWare and CADENCE software tools have been used for simulation and modeling of sensor properties

Published in:

Industrial Technology, 2005. ICIT 2005. IEEE International Conference on

Date of Conference:

14-17 Dec. 2005