By Topic

Multiobjective optimization of radio-to-fiber repeater placement a jumping gene algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chan, T.M. ; Dept. of Electron. Eng., City Univ. of Hong Kong, China ; Man, K.F. ; Tang, K.S. ; Kwong, S.

This paper considers the radio-to-fiber repeater placement problem in wireless local loop (WLL) Systems. The severe problem that the WLL systems encountered is that the large diffraction loss from rooftop to street occurs at its frequency band, 2.3 GHz. The radio-to-fiber repeaters can be used for the remedy of this situation. Unlike the conventional WLL systems, the total system cost of this option depends on the additional repeaters and optical fibers (links). Thus, our objective is to minimize the total repeater cost and total link cost simultaneously by selecting optimal locations for the repeaters. It is a multiobjective problem in which a tradeoff between the total repeater cost and total link cost can thus be made. A new jumping gene paradigm called jumping-gene genetic algorithm (JGGA) is proposed to solve this conflicting dilemma. The main feature of JGGA is that it only consists of a simple operation in which a transposition of the gene(s) is induced within the same or another chromosome within the framework of genetic algorithm. The algorithm has been tested by using two specific performance metrics in evaluating the quality of obtained sets of non-dominated solutions. Simulation results revealed from this study that JGGA is able to find non-dominated solutions with better convergence and diversity than other multiobjective evolutionary algorithms.

Published in:

Industrial Technology, 2005. ICIT 2005. IEEE International Conference on

Date of Conference:

14-17 Dec. 2005