By Topic

A Methodology for Efficient Estimation of Switching Activity in Sequential Logic Circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
J. Monteiro ; Department of EECS, MIT, Cambridge ; S. Devadas ; B. Lin

We describe a computationally efficient scheme to approximate average switching activity in sequential circuits which requires the solution of a non-linear system of equations of size N, where the variables correspond to state line probabilities. We show that the approximation method is within 3% of the exact Chapman-Kolmogorov method, but is orders of magnitude faster for large circuits. Previous sequential switching activity estimation methods can have significantly greater inaccuracies.

Published in:

Design Automation, 1994. 31st Conference on

Date of Conference:

6-10 June 1994