By Topic

A functional fault model for sequential machines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
K. T. Cheng ; AT&T Bell Lab., Murray Hill, NJ, USA ; J. Y. Jou

A fault model at the state transition level is proposed for finite state machines. In this model, a fault causes the destination state of a state transition to be faulty. Analysis shows that a test set that detects all single-state-transition (SST) faults will also detect most multiple-state-transition (MST) faults in practical finite state machines. The quality of the test set generated for SST faults is close to that of the sequences derived from the checking experiment. It is also shown that the upper bound of the length of the SST fault test is 2 MN2 for an N-state M-transition machine, while that of the checking sequence is exponential. An automatic test generation algorithm and a test generation system, FTG, based on the model show that the test set generated for SST faults achieves high single stuck-at-fault coverage as well as high transistor fault coverage for multilevel implementations of the machine

Published in:

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems  (Volume:11 ,  Issue: 9 )