By Topic

PAPR reduction of an OFDM signal by use of PTS with low computational complexity

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yang, L. ; Dept. of Commun. Eng., Nanjing Univ. of Sci. & Technol., China ; Chen, R.S. ; Siu, Y.M. ; Soo, K.K.

One of the major drawbacks of orthogonal frequency division multiplexing (OFDM) is the high peak-to-average power ratio (PAPR) of the transmitted OFDM signal. Partial transmit sequence (PTS) technique can improve the PAPR statistics of an OFDM signal. However optimum PTS (OPTS) technique requires an exhaustive search over all combinations of allowed phase factors, the search complexity increases exponentially with the number of sub-blocks. By combining sub-optimal PTS with a preset threshold, a novel reduced complexity PTS (RC-PTS) technique is presented to decrease the computational complexity. Numerical results show that the proposed approach can achieve better performance with lower computational complexity when compared to that of other PTS approaches.

Published in:

Broadcasting, IEEE Transactions on  (Volume:52 ,  Issue: 1 )