Cart (Loading....) | Create Account
Close category search window
 

Software defect association mining and defect correction effort prediction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Qinbao Song ; Dept. of Comput. Sci. & Technol., Xi''an Jiaotong Univ., China ; Shepperd, M. ; Cartwright, M. ; Mair, C.

Much current software defect prediction work focuses on the number of defects remaining in a software system. In this paper, we present association rule mining based methods to predict defect associations and defect correction effort. This is to help developers detect software defects and assist project managers in allocating testing resources more effectively. We applied the proposed methods to the SEL defect data consisting of more than 200 projects over more than 15 years. The results show that, for defect association prediction, the accuracy is very high and the false-negative rate is very low. Likewise, for the defect correction effort prediction, the accuracy for both defect isolation effort prediction and defect correction effort prediction are also high. We compared the defect correction effort prediction method with other types of methods - PART, C4.5, and Naive Bayes - and show that accuracy has been improved by at least 23 percent. We also evaluated the impact of support and confidence levels on prediction accuracy, false-negative rate, false-positive rate, and the number of rules. We found that higher support and confidence levels may not result in higher prediction accuracy, and a sufficient number of rules is a precondition for high prediction accuracy.

Published in:

Software Engineering, IEEE Transactions on  (Volume:32 ,  Issue: 2 )

Date of Publication:

Feb. 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.