By Topic

A transaction mapping algorithm for frequent itemsets mining

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
M. Song ; Dept. of Comput. Sci. & Eng., Connecticut Univ., Storrs, CT, USA ; Sanguthevar Rajasekaran

In this paper, we present a novel algorithm for mining complete frequent itemsets. This algorithm is referred to as the TM (transaction mapping) algorithm from hereon. In this algorithm, transaction ids of each itemset are mapped and compressed to continuous transaction intervals in a different space and the counting of itemsets is performed by intersecting these interval lists in a depth-first order along the lexicographic tree. When the compression coefficient becomes smaller than the average number of comparisons for intervals intersection at a certain level, the algorithm switches to transaction id intersection. We have evaluated the algorithm against two popular frequent itemset mining algorithms, FP-growth and dEclat, using a variety of data sets with short and long frequent patterns. Experimental data show that the TM algorithm outperforms these two algorithms.

Published in:

IEEE Transactions on Knowledge and Data Engineering  (Volume:18 ,  Issue: 4 )