By Topic

Statistical analysis of inherent ambiguities in recovering 3-D motion from a noisy flow field

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Young, G.-S.J. ; IBM Corp., Austin, TX, USA ; Chellappa, R.

The inherent ambiguities in recovering 3-D motion information from a single optical flow field are studied using a statistical model. The ambiguities are quantified using the Cramer-Rao lower bound. As a special case, the performance bound for the motion of 3-D rigid planar surfaces is studied in detail. The dependence of the bound on factors such as the underlying motion, surface position, surface orientation, field of view, and density of available pixels are derived as closed-form expressions. A subset of the results support S. Adiv's (1989) analysis of the inherent ambiguities of motion parameters. For the general motion of an arbitrary surface. It is shown that the aperture problem in computing the optical flow restricts the nontrivial information about the 3-D motion to a sparse set of pixels at which both components of the flow velocity are observable. Computer simulations are used to study the dependence of the inherent ambiguities on the underlying motion, the field of view, and the number of feature points for the motion in front of a nonplanar environment

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:14 ,  Issue: 10 )