By Topic

Automatic image annotation based-on model space

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jing Lu ; Dept. of Comput. Sci. & Technol., Tsinghua Univ., Beijing, China ; Shao-ping Ma ; Min Zhang

Automatic image annotation is an important but highly challenging problem in content-based image retrieval. This paper introduces a new procedure for providing images with semantic keywords. To bridge the semantic gap, classified images are used to train a special multi-class classifier which maps the visual image feature into the model space. The model-vectors that construct the model space are more appropriate for the image content and are applied to each individual image. Soft labels are then given to the unannotated images during the propagation procedure, and as a keyword, each label is associated with a membership confidence in probability. Thus conceptualized annotation of images could be provided to users. An empirical study of the COREL image database showed that the proposed model-vectors outperformed visual features by 14.0% in the F-measure for annotation.

Published in:

2005 International Conference on Natural Language Processing and Knowledge Engineering

Date of Conference:

30 Oct.-1 Nov. 2005