By Topic

Bayesian estimation of transmission tomograms using segmentation based optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
K. Sauer ; Dept. of Electr. Eng., Notre Dame Univ., IN, USA ; C. Bouman

The authors present a method for nondifferentiable optimization in maximum a posteriori estimation of computed transmission tomograms. This problem arises in the application of a Markov random field image model with absolute value potential functions. Even though the required optimization is on a convex function, local optimization methods, which iteratively update pixel values, become trapped on the nondifferentiable edges of the function. An algorithm which circumvents this problem by updating connected groups of pixels formed in an intermediate segmentation step is proposed. Experimental results showed that this approach substantially increased the rate of convergence and the quality of the reconstruction

Published in:

IEEE Transactions on Nuclear Science  (Volume:39 ,  Issue: 4 )