By Topic

Microfluidic chips for viral RNA extraction & detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

15 Author(s)
Yobas, L. ; Bioelectronics Program, Inst. of Microelectron., Singapore ; Wing Hui ; Hongmiao Ji ; Yu Chen
more authors

Sensing biomolecules at minute quantities demands laborious and skill-laden laboratory protocols for sample preparation and amplification in order to improve signal-to-noise ratio. Nucleic-acid-based detection of viral particles in whole blood requires separation of viral particles from blood cells followed by extraction, amplification, and detection of viral nucleic acids. Here, three microfluidic chips have been independently shown to be capable of performing each critical step. Separation of viral particles involves a flow-through, shear-type microfilter chip that can handle large volume of blood. The remaining chips, although developed for genomic DNA, have been adopted for extraction and amplification of viral RNA. In the extraction chip, protein coatings around viral particles are chemically broken to liberate viral RNA which can reversibly bind to the chip surface under high-salt conditions. Viral RNA can be eluted out with a low-salt buffer after removal of unwanted debris. In the amplification chip, viral RNA is first transcribed into cDNA and then multiplied exponentially in copies by a continuous, isothermal, enzyme-based technique known as Nucleic Acid Sequence-Based Amplification (NASBA). The amplicons are detected on the same chip using DNA probes conjugated with horse radish peroxide (HRP) for colorimetry

Published in:

Sensors, 2005 IEEE

Date of Conference:

Oct. 30 2005-Nov. 3 2005